

UM WAS GEHT ES?

Forschung auf der Nanometerskala erfordert Fabrikation und Charakterisierung mit der entsprechenden Genauigkeit. In den so genannten "Noise-free Labs" wurden hierfür die notwendigen baulichen Massnahmen getroffen, um diese Art der Forschung für die nächsten 20 bis 30 Jahre zu ermöglichen.

WIESO STELLEN EXTERNE STÖRQUELLEN PROBLEME FÜR DIE NANOTECHNOLOGIE DAR?

Auf der Skala von Molekülen und Atomen stellen externe Störquellen grosse Limitierungen dar. Hier einige Beispiele:

- Temperaturschwankungen verschieben eine Probe durch Ausdehnung des Trägermaterials.
- Elektromagnetische Felder lenken den bildgebenden oder strukturierenden Elektronenstrahl ab.
- Seismische Vibrationen und akustische Lärmquellen erzeugen Bewegungen der ganzen Maschine und führen zu grossen Variationen in der Positionierung.

WAS SIND "NOISE-FREE LABS"?

In den "Noise-free Labs" wird der Einfluss externer Störquellen durch Abschirm- und Dämpfungsmassnahmen auf ein Minimum reduziert. Auch allfällige Störquellen, die von den im Labor verwendeten Geräten oder Maschinen ausgehen, werden minimiert. Die Labore zeichnen sich durch folgende Spezifikationen aus:

- Temperaturstabilität: ΔT ± 0.01° C
- Elektromagnetische Felder: $|B_{AC}| < 2$ nT, $\Delta B_{DC} < 20$ nT (Schwankungen durch Erdmagnetfeld)
- Akustischer Lärmpegel: < 21 dB
- Vibrationen: < 100 nm/s bei 1 Hz

FAKTEN UND ZAHLEN

Diese speziellen Labors wurden im Kellerbereich des Gebäudes, 8 m unter dem Erdboden, gebaut. Ihr Boden steht direkt auf dem Gestein des Untergrundes.

Die sechs "Noise-free Labs" bieten total 176 m² Laborfläche. Ein Labor wird gemeinsam mit der ETH Zürich betrieben. Zudem gibt es fünf spezielle Nebenräume (mit insgesamt 66 m² Bodenfläche).

WELCHE MASSNAHMEN WURDEN UMGESETZT?

Für das Erreichen der Spezifikationen wurden verschiedene Massnahmen entwickelt:

- Platzierung der lärm- oder vibrationserzeugenden Geräte (Pumpen, Transformatoren, Netzgeräte etc.) in einem angrenzenden Hilfbetriebsraum
- Bedienung der Geräte von einem speziellen Benutzerraum oder direkt vom Büro aus (Wärmeabgabe Mensch: 100 W, Vibrationen etc.)
- Komplette Verkleidung jedes einzelnen Labors mit magnetischem NiFe-Metall (ebenso Türen, Elektroschränke etc.)
- Massive, luftgefederte und aktiv gelagerte Betonsockel von 30 – 68 Tonnen Masse
- Schwingungsentkoppelte Benutzerplattform
- Aktive Kompensation von elektromagnetischen Restfeldern durch Helmholtz-Spulenpaare in allen drei Raumachsen
- Laminares und vertikales Belüftungssystem mit minimalen Strömungsgeschwindigkeiten und lokalen Kühl- und Vorwärmelementen, die individuell für jedes Labor eingestellt werden können
- Kühldecke
- LED-Beleuchtung


WELCHE EXPERIMENTE WERDEN HIER DURCHGEFÜHRT?

Es werden sowohl Geräte für die Herstellung (z.B. Elektronenstrahlschreiber) sowie für die Charakterisierung von Nanostrukturen (z.B. Spin-polarisiertes Rasterelektronenmikroskop, TEM) in den "Noise-free Labs" betrieben. Hinzu kommen verschiedene im Labor entwickelte und betriebene Experimentieraufbauten, welche besonders von dieser Forschungsumgebung profitieren.

WEITERFÜHRENDE INFORMATIONEN

Lörtscher E.; Widmer D. & Gotsmann, B.; Einblicke in ein neuartiges Laborkonzept - Umfassende Störungsreduktion als Herausforderung, SEV/VSE Bulletin, 10, 1-6, 2011

Lörtscher E.; Widmer D. & Gotsmann, B.; Next-Generation Nanotechnology Laboratories with Simultaneous Reduction of all Relevant Disturbances, RCS Nanoscale, 2013, 5, 10542-10549

